Age-related resistance in Arabidopsis is a developmentally regulated defense response to Pseudomonas syringae.
نویسندگان
چکیده
Age-related resistance (ARR) has been observed in a number of plant species; however, little is known about the biochemical or molecular mechanisms involved in this response. Arabidopsis becomes more resistant, or less susceptible, to virulent Pseudomonas syringae (pv tomato or maculicola) as plants mature (in planta bacterial growth reduction of 10- to 100-fold). An ARR-like response also was observed in response to certain environmental conditions that accelerate Arabidopsis development. ARR occurs in the Arabidopsis mutants pad3-1, eds7-1, npr1-1, and etr1-4, suggesting that ARR is a distinct defense response, unlike the induced systemic resistance or systemic acquired resistance responses. However, three salicylic acid (SA) accumulation-deficient plant lines, NahG, sid1, and sid2, did not exhibit ARR. A heat-stable antibacterial activity was detected in intercellular washing fluids in response to Pst inoculation in wild-type ARR-competent plants but not in NAHG: These data suggest that the ability to accumulate SA is necessary for the ARR response and that SA may act as a signal for the production of the ARR-associated antimicrobial compound(s) and/or it may possess direct antibacterial activity against P. syringae.
منابع مشابه
Potentiation of developmentally regulated plant defense response by AtWRKY18, a pathogen-induced Arabidopsis transcription factor.
AtWRKY18 is a pathogen- and salicylic acid-induced Arabidopsis transcription factor containing the plant-specific WRKY zinc finger DNA-binding motif. In the present study, we have transformed Arabidopsis plants with AtWRKY18 under control of the cauliflower mosaic virus 35S promoter. Surprisingly, transgenic plants expressing high levels of AtWRKY18 were stunted in growth. When expressed at mod...
متن کاملSome things get better with age: differences in salicylic acid accumulation and defense signaling in young and mature Arabidopsis
In Arabidopsis, much of what we know about the phytohormone salicylic acid (SA) and its role in plant defense comes from experiments using young plants. We are interested in understanding why young plants are susceptible to virulent strains of Pseudomonas syringae, while mature plants exhibit a robust defense response known as age-related resistance (ARR). SA-mediated signaling is important for...
متن کاملArabidopsis SON1 is an F-box protein that regulates a novel induced defense response independent of both salicylic acid and systemic acquired resistance.
One of several induced defense responses in plants is systemic acquired resistance (SAR), which is regulated by salicylic acid and in Arabidopsis by the NIM1/NPR1 protein. To identify additional components of the SAR pathway or other genes that regulate SAR-independent resistance, we performed genetic suppressor screens of mutagenized nim1-1 seedlings, which are highly susceptible to infection ...
متن کاملRegulation of miR163 and its targets in defense against Pseudomonas syringae in Arabidopsis thaliana
Small RNAs are important regulators for a variety of biological processes, including leaf development, flowering-time, embryogenesis and defense responses. miR163 is a non-conserved miRNA and its locus has evolved recently through inverted duplication of its target genes to which they belong to the SABATH family of related small-molecule methyltransferases (MTs). In Arabidopsis thaliana, previo...
متن کاملOverexpression of Arabidopsis ACBP3 enhances NPR1-dependent plant resistance to Pseudomonas syringe pv tomato DC3000.
ACBP3 is one of six Arabidopsis (Arabidopsis thaliana) genes, designated ACBP1 to ACBP6, that encode acyl-coenzyme A (CoA)-binding proteins (ACBPs). These ACBPs bind long-chain acyl-CoA esters and phospholipids and are involved in diverse cellular functions, including acyl-CoA homeostasis, development, and stress tolerance. Recombinant ACBP3 binds polyunsaturated acyl-CoA esters and phospholipi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Plant cell
دوره 14 2 شماره
صفحات -
تاریخ انتشار 2002